确诊周期长,47%的患者不能被立即确诊,38%患者被误诊为其他疾病,全国预计约有3万名患者。现行的治疗方式多以激素配合免疫抑制剂为主,但只能使病情得到缓解,并无有效根治措施,且会带来一定的副作用。
张亮告诉科技日报记者,在我们大脑内,有一支专门用于修建和修复“髓鞘”这种“高速公路”的“工程队”——少突细胞,这种细胞只有成熟以后,才能完成它的职责。而在脱髓鞘相关疾病的患者体内,尽管发现有少突细胞这种“工程队”的存在,但它们似乎并没有进入工作状态,不能快速有效地修复“高速公路”上的各种破损,也就是髓鞘不能被重新生成,轴突无法被重新包裹。因此,大脑发出的神经指令堵在“高速公路”上,无法到达目的地去指挥各种器官和肌肉的运动。
如何让少突细胞变得成熟,进入工作状态,再生出髓鞘?这在国际上仍是一个尚未解决的重要生物医学问题,也是帮助多发性硬化症、视神经脊髓炎等相关患者早日康复的关键。
找到“唤醒”少突细胞的关键蛋白
核孔蛋白是核孔复合体的组成部分,可调节细胞核与细胞内物质的交流沟通。已经发现的核孔蛋白大约有30种,除了组成核孔复合体以外,它们“身兼数职”,其中有几个能帮助调节基因何时何地被转化为蛋白质。
张亮团队在研究中首先发现了一种核孔蛋白——Seh1,该蛋白在少突细胞分化过程中特异性地表达量会增加,而且在少突细胞中人为增加该蛋白的表达量,可以促进细胞的分化和髓鞘的生成。
“为了验证该结论,我们构建了多种小鼠模型,在实验中发现,该核孔蛋白的缺失会造成小鼠震颤、行动不稳等一系列类似脱髓鞘的症状。”张亮介绍说,在人为破坏小鼠的髓鞘系统后,缺少这种核孔蛋白的突变小鼠无法快速恢复髓鞘的再生。同时,人为地增加这种蛋白的含量,却能够促进突变小鼠少突细胞的成熟和髓鞘的生成。
该团队进一步采用分子生物学手段研究发现,核孔蛋白能够在核孔复合体周围“招募”转录因子“Olig2”和染色质重塑蛋白“Brd7”,构建一个促进少突细胞分化的转录微环境,帮助少突细胞更快地变得成熟,从而生成髓鞘。
这项研究在国际上首次发现了核孔蛋白Seh1在髓鞘再生中的生理功能,为利用核孔蛋白作为靶点设计小分子药物提供了科学思路,对多发性硬化症、视神经脊髓炎等疾病的治疗有着重要的参考意义。该研究工作还得到了厦门大学莫玮教授、美国西南医学中心丰托拉教授的大力支持。